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Abstract

Means, standard deviations and Probability distribution functions (PDFs) of cloud prop-
erties from the MODerate resolution Infrared Spectrometer are estimated globally as
function of averaging scale, varied from 5 to 500 km. These properties – cloud fraction,
droplet effective radius, and liquid water path – all matter for cloud-climate uncertainty5

quantification and reduction efforts. Analytical expressions are identified that fit best to
each observed PDF. Global means and standard deviations are confirmed to change
with scale. For the range of scales considered, global means vary only within 3% for
cloud fraction, 7% for liquid water path, and 0.2% for cloud particle effective radius.
These scale dependences contribute to the uncertainties in their global budgets. Scale10

dependence for standard deviations is compared to predictions for turbulent systems.
While the best analytical PDF fit to each variable differs, all PDFs are well described by
log-normal PDFs when the mean is normalized by the standard deviation inside each
averaging domain. Importantly, log-normal distributions yield significantly better fits to
the observations than gaussians at all scales. This suggests a possible approach for15

both sub-grid and unified stochastic modeling of these variables at all scales. The re-
sults also highlight the need to establish an adequate spatial resolution for two-stream
radiative studies of cloud-climate interactions.

1 Introduction

Cloud impacts on the energy and water cycles remain an important source of uncer-20

tainty in our understanding of climate. This applies to the simplest low-dimensional
energy balance models (Budyko, 1969; Sellers, 1969; Pujol, 2003), climate sensitiv-
ity analyses (e.g. Roe and Baker, 2007; Hannart et al., 2009), two-scale stochastic
models (e.g. Imkeller and v. Storch, 2001), and to complex Global Circulation Models
(GCMs) incorporated into the Intergovernmental Panel on Climate Change assess-25

ments (Solomon, 2007).
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The inherent turbulence of atmospheric flows prevents observations and models
from capturing the constantly evolving structure of clouds in the atmosphere. This com-
plexity limits our confidence in predictions of cloud properties and therefore of climate
sensitivity. Observed cloud properties have, besides, biases dependent on sensor-
(e.g. Boers et al., 2006; Horváth and Davies, 2007; Bennartz, 2007) and cloud-types5

(de la Torre Juárez et al., 2009) that may be smaller than those resulting from limited
sampling of highly variable fields (Schutgens and Roebeling, 2009). Therefore, one
approach to understand the radiative impact of clouds on climate is to determine the
robust statistical distributions of cloud properties rather than solving exactly for each
specific cloud field. Although it is widely recognized that there is no justification for10

assuming gaussian distributions (Hannart et al., 2009), analyses of atmospheric flows
and climate often quantify cloud-climate dynamics and uncertainties by interpreting
means, standard deviations and confidence levels in gaussian frameworks (e.g. Roe
and Baker, 2007). Identifying more realistic distributions gives more credible depic-
tions of observational results, better subgrid parameterizations, and a more rigorous15

approach to quantifying cloud and climate modeling uncertainties.
Questions also remain open about climate impacts of processes unfolding at the rela-

tively small scales of the clouds themselves. The spatio-temporal scales at which cloud
formation, precipitation, and interactions with aerosols occur are largely unresolved by
satellite instruments, yet these phenomena determine large-scale properties of clouds20

relevant to the atmosphere’s radiative balance. The ability to characterize statistically a
large range of scales can reveal dynamical interactions across scales, and, possibly, to
extrapolate these to the small unresolved ones, thus providing relevant validation data
for cloud-process models.

Comparisons of trade cumulus cloud fraction statistics over the tropical Western At-25

lantic at pixel resolutions from the 15-m to the kilometer scale show significant scale-
dependence (e.g. Dey et al., 2008). Similar scale-dependence was found in early
data-driven stochastic simulations of cloud fields (Shenk and Salomonson, 1972), in
observed Outgoing Long-wave Radiation in high tropical Pacific clouds (Pierrehumbert,
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1996), in albedo from optical depths (Oreopoulos and Davies, 1998), in global cloud
optical thickness, emissivity and cloud top temperature (Barker et al., 1996; Rossow
et al., 2002), and in liquid water path of low-level marine clouds over the Pacific (Wood
and Hartmann, 2006). These studies showed that different averaging scales result in
apparent biases between instruments, and between instruments and models. This ef-5

fect is illustrated in Fig. 1. Yet analyses of global cloud variables and climate properties
occur typically at far coarser scales. For instance, the global radiative budget of the
atmosphere has been studied at 10◦× 10◦ (e.g. Forster and Gregory, 2006); satellite-
based observational studies of the hydrological cycle are found at resolutions of 1◦× 1◦

(Schlosser and Houser, 2007); studies of the global radiative balance from weather10

analyses are often at resolutions of 2.5◦× 2.5◦ (Trenberth et al., 2003); global effects
of aerosols on clouds driven by micro-scale interactions are modeled at 5◦× 5◦ and
2.5◦× 2.5◦ resolutions (Quaas et al., 2009, and references therein).

This paper compares satellite-based inferences of a set of cloud properties relevant
to cloud-climate interactions, and looks for the best fit analytical probability distribu-15

tion functions (PDFs). The properties are: Cloud Fraction (CF), which modulates the
amount of radiation reaching the surface and how much is reflected back into space;
cloud liquid water path (LWP), which acts as a powerful barrier of outgoing radiation;
and cloud particle effective radius (re), which modulates the radiative absorption prop-
erties of clouds and the Earth’s albedo. LWP is derived from re and cloud optical depth,20

τ, through LWP ∝ ρwτre, with ρw the condensed water density (Platnick et al., 2003).
Analytical PDFs fitted here, besides gaussians, have been proposed before: beta for
CF (Falls, 1974), Gamma for LWP and τ (Newman et al., 1995; Barker et al., 1996) and
log-normal for turbulent processes (Monin and Yaglom, 1975). PDFs are for global CF,
re and LWP, and means and standard deviations are estimated at resolutions from 5 to25

500 km using Collection 5 retrievals from the MODerate resolution Infrared Spectrom-
eter (MODIS) aboard the AQUA spacecraft (King et al., 2006).

We quantify the scale-dependence of statistical moments and compare them to pre-
dictions for self-similar homogeneous turbulent flows (Monin and Yaglom, 1975; Frisch,
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1995). Quantitative empirical evidence for the turbulent nature of clouds from a space-
based perspective goes at least back to Lovejoy (1982), who invoked fractal geome-
try, and continues to come using multifractal statistics (Lovejoy et al., 2009). To the
best of our knowledge, previous studies of satellite observations have used raw (Level-
1/radiance) data, and gradients thereof in the case of multifractal analysis, while here5

we use retrieved (standard Level-2) cloud properties. It is reassuring (Davis et al.,
1994) to see that, in spite of all the assumptions used to process radiances into stan-
dard cloud products, the signature of turbulence is still clear and can be represented
simply enough for practical parameterization of cloud processes in climate models.

2 Analytical PDFs at different scales10

Figure 2 shows global PDFs for CF, re, and LWP observed over 10 equinox days in
2003 to 2007 at seven spatial resolutions. Equinox days minimize possible seasonal
biases while handling the large amount of high spatial resolution data needed to cover
a significant number of years. The data are from five-minute granules of MODIS-AQUA
daytime observations. A granule covers about 1354×2030 km2 and is treated as if it15

were a “realization” of a cloud experiment. This resulted in about 2880 realizations.
Cloud fraction was considered where CF and Cloud Top Pressure (CTP) were flagged
as useable. LWP and re are for the same clouds if the LWP is flagged by MODIS as
useable. CTP flags were checked to limit the differences in cloud populations from this
study to those that discriminate cloud heights. Data confidence levels were allowed to20

be marginal, good and very good. This assumes that marginal retrievals can return
instantaneously incorrect but plausible values. Cloud properties (CF, LWP, re, CTP)
were extracted for each granule and statistical moments computed within the granule
at seven different resolutions: 5, 10, 25, 50, 100, 250, and 500 km. No constraints
were set on the percentage of valid retrievals in each scene, their CTP, or if the clouds25

were over land or ocean. Analytical PDFs were fitted at all spatial resolutions to the
observed CF, LWP and re distributions using a non-linear least-squares approach with
two fitting parameters related to the mean and standard deviation. As expected (Falls,
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1974), the observed bimodal PDF of CF is best fit to a beta distribution. The CF is
the 5 km resolution MODIS cloud product where the only possible values are 1 and 0
(overcast or clear). As the spatial resolution is degraded, Fig. 2a shows that a contin-
uum of values emerges through averaging clear and overcast scenes onto one mean
value. At the coarser resolutions of 250 km and above, the higher peak shifts from 15

towards 0.9. This scale-dependent behavior of CF is consistent with that found for clear
scenes using the MODIS 1-km cloud mask (Krijger et al., 2007) where confidence lev-
els (confident cloudy, probably cloudy, probably clear, confident clear) were translated
into percentages of clear sky at 1 km and lower spatial resolutions.

Unlike CF, LWP and re have a (theoretically) unbounded range of values. Both10

show skewed, hence non-gaussian, distributions in Fig. 2. Figure 2d–f shows that
the log-normal is a better choice for LWP at resolutions finer than 100 km×100 km, the
Gamma function is better at coarser resolutions. The log-normal PDF, a popular choice
in turbulence, is a good choice for LWP (Fig. 2b). Gamma PDFs provide the best fit to
re at all scales (Fig. 2f), which is consistent with how re depends on cloud droplet radius15

(Pointikis and Hicks, 1992) and how droplet radius follows Weibull/Gamma distributions
(Liu and Daum, 2002). Figure 2b and c shows that the peak (mode) and tails of LWP
and re PDFs change with spatial resolution. Large deviations determine the tails on
LWP and re distributions in these figures. As the spatial resolution is decreased, the
averages over larger areas blur these extreme values. As a result, the distributions at20

coarser resolutions appear more symmetric, the means shift closer to the peaks of the
distributions and the tails shorten.

3 Scale dependence of statistical moments

Figure 3 shows the scale dependence of global statistical moments for CF, LWP and re
calculated by extracting first the average of each variable over spatial domains, that we25

will call “pixels” of side length L, and then calculating the global average and standard
deviation of all those local pixel means. The moments in Fig. 3 all change as a function
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of scale. The normalized mean is also shown, it is the inverse of the global “relative dis-
persion” in Pointikis and Hicks (1992); and the square root of the global “homogeneity
parameter” in Wood and Hartmann (2006). The normalized mean enables to compare
the relevance of the scale-dependence for variables with different values. Numerical
values in Table 1 show mean CF and LWP more scale-dependent than re. At the same5

time, the normalized mean (and the dispersion) for re changes over a factor two.
Kostinski and Shaw (2001) argued that cloud particle aggregations at microphysics

scales obey statistics similar to those of binary-valued fields with an auto-correlation
functions decaying as scale increases. An exponential decay reveals a discrete Pois-
son distribution of cloudy-clear interfaces. If CF is decorrelated at 5 km (as suggested10

by results in Schutgens and Roebeling, 2009), then consecutive sampling of CF from
uncorrelated pixels is analogous to a temporal sampling of a random binary (cloudy-
clear) outcome, time being proportional to the number of pixels sampled. Therefore, if
CF statistics follow such Poisson-type rules and self-similarity holds up to 5-km resolu-
tion, the absolute deviation would approach the mean value. This is not seen in Fig. 2a15

where mean CF over its standard deviation decreases with increasing pixel size but
remains above unity for all the range 5 to 500 km.

Normalized mean LWP approaches unity at the 100×100 km2 pixel size, despite
LWP not being a bimodal distribution. A possible explanation could come from ar-
guments similar to those from turbulence theory (Frisch, 1995) where the scale-20

dependence of statistical moments for a variable, X , gives information about how its
variance is transferred across scales in turbulent flows. Following Jiménez (2007), we
define a generalized structure function of order n as: SX (n)=

∫
X n P (X )dX , P (X ) being

its PDF. SX (n) is used to define a generalized flatness factor as YX (n)=SX (n)/SX (2)n/2.
Kolmogorov’s self-similarity hypothesis for homogeneous turbulence (X is velocity v)25

leads to the scaling law Sv (n) ∼ Ln/3, at least for low n, and thus Yv (n) is independent of

L. Note that the normalized LWP means in Fig. 3b are YLWP(1) =
〈〈LWP〉〉global

〈〈〈LWP〉2−〈〈LWP〉〉2global〉
1/2
global

,

overlooking that in turbulence X is a centered (zero-mean) random variable. The
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scaling in Fig. 2b for LWP at pixel sizes of 100×100 km2 and larger is then consis-
tent with that that of self-similar turbulent flows in the inertial subrange.

The observed YCF(1) and Yre
(1) do not converge to unity in Fig. 3a, but approach

a linear law in the inverse pixel side length, 1/L. A linear fit, ỸCF = 3.03+88.21/L
was found with mean absolute deviation ∆CF = 100×〈|1− ỸCF(1)/YCF|〉= 0.9%. Sim-5

ilar fits to the global normalized means for LWP and re yield ỸLWP = 1.18+10.26/L
and Ỹre

= 3.25+20.17/L respectively, with larger mean absolute deviations ∆LWP ≈
∆re

= 5.5%. As expected from a turbulence perspective, global means change far
less than standard deviations when looking for power laws in L. Specifically, we
find 〈CF〉=0.8L0.004(∆=1%), 〈LWP〉=124L0.013(∆=1.6%), and 〈re〉=19.6L−0.001(∆=10

0.1%), while 〈CF’2〉1/2 =0.06L0.24(∆=5.6%) 〈LWP’2〉1/2 =33L0.24(∆=6.6%), 〈r ′2e 〉1/2 =

2.3L0.18(∆=6.1%), which approach L1/4.

4 PDFs of locally normalized means

In essence, Fig. 4 shows statistics of statistics as a function of scale. The PDFs are
for means over each pixel normalized locally by the standard deviation over all obser-15

vations within the pixel. Because CF is given at 5×5 km2, a minimum of 25×25 km2

is necessary for the CF pixels to accumulate some significant standard deviation. The
notable finding is that, while the global PDFs of CF, LWP, and re display different func-
tional forms in Fig. 2, the global PDFs of locally normalized means have a very similar
shape for all variables and all are fitted best by log-normal distributions. Notice that the20

PDFs have been displayed in log-scales making the tails more visible and, as is often
seen in turbulence, they appear to be power-law. However, they contribute little to the
absolute deviation from the fit when weighted by their frequency of occurrence. In-
deed, weighting the absolute deviations by the observed value (thin lines in Fig. 5a–c)
measures the deviation from the functional shape, and this shows that the log-normal25

remains best for LWP and re at all domain sizes and it worsens for CF at resolutions
finer than 250×250 km2.
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5 Summary and conclusions

Notwithstanding MODIS measurement errors (Boers et al., 2006; Horváth and Davies,
2007; Bennartz, 2007; de la Torre Juárez et al., 2009) and those biases caused by
incomplete sampling of highly variable fields (Oreopoulos et al., 2009; Schutgens and
Roebeling, 2009), this study has intercompared a set of analytical functions that best5

fit the observed PDFs of global macroscopic cloud properties across a large range
of scales. Observed cloud fraction is best approached by beta distributions, droplet
effective radius by a Gamma PDF, and liquid water path follows closely a log-normal or
a Gamma distribution. Gaussian PDFs are never the best description.

The global normalized mean CF decreases linearly with the size L of the local av-10

eraging domain down to about 100×100 km2 areas, at which point it trends upward
to a resolution of 500×500 km2. Average LWP changes little from 10×10 km2 to
100×100 km2 where it starts increasing linearly with 1/L. Globally averaged re seems
to be independent of the spatial resolution. However, normalized means of re sepa-
rate more, with a linear dependence on 1/L. The mode of the finer resolution CF and15

the coarser LWP distributions approach unity, which is consistent with the domain-level
statistics following self-similar scaling: YLWP(1)∼ constant, as described earlier, in anal-
ogy with turbulence theory and observations. Furthermore, when testing for possible
connections to self-similar Poissonian statistics, CF fails at 5 km and above.

PDFs of locally normalized mean CF, LWP and re (mean over standard deviation20

inside pixels of a given size) measure the heterogeneity of clouds within each pixel
and follow a scale-dependent log-normal distribution for all three variables, thus pro-
viding a possible unified description of these cloud properties at all scales in climate
model parameterizations of sub-grid processes. Still, the normalized PDFs have tails
associated with extreme values and unusually low variability missed by the closest log-25

normal or Gamma. Normalized CF at resolutions higher than 250 km×250 km is better
approached by a Gamma distribution.
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The scale dependence of cloud variability highlights that care is needed to choose a
spatial resolution for analyses of global cloud-radiative effects. Rossow et al. (2002) ar-
gue that significant horizontal radiative transfer at scales below 3 km justify considering
cloud properties at scales only above 3 km for global analyses based on two-stream
(up-down) radiative models. This hypothesis may be tested by looking at the radiative5

impacts of clouds with different sizes and cloud fractions at small scales. Since MODIS
CF and τ statistics over 5×5 km2 regions are expected to differ little from the values at
3 km (Dey et al., 2008), 5 km would be a good choice for such a future analysis.
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Table 1. Observed means, standard deviations and dispersions (inverse of the normalized
means) in the panels of Fig. 4. Parentheses show the %-difference of every mean from the
mean of all means, i.e., the global average.

Variable Moment 5 km 10 km 25 km 50 km 100 km 250 km 500 km

Mean 0.82 (0.8%) 0.81 (−1.1%) 0.80 (−1.4%) 0.82 (0.1%) 0.83 (1.6%)

CF Standard 0.12 0.17 0.20 0.24 0.26

Dispersion 0.15 0.21 0.25 0.29 0.32

Mean 135.28 (−0.7%) 134.20 (−1.5%) 133.00 (−2.4%) 133.18 (−2.3%) 134.79 (−1.1%) 140.38 (3.0%) 143.22 (5.1%)

LWP Standard 42.8 58.8 78.5 91.5 103.7 122.3 136.2

Dispersion 0.32 0.44 0.59 0.69 0.77 0.87 0.95

Mean 19.54 (0.1%) 19.57 (0.1%) 19.57 (0.1%) 19.57 (0.0%) 19.54 (−0.1%) 19.52 (−0.1%) 19.51 (−0.1%)

re Standard 2.75 3.57 4.50 5.08 5.59 6.21 6.70

Dispersion 0.14 0.18 0.23 0.26 0.29 0.32 0.34
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al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

330˚ 333˚ 336˚ 339˚ 342˚ 345˚ 348˚

26˚

28˚

30˚

32˚

34˚

36˚

38˚
26˚

28˚

30˚

32˚

34˚

36˚

38˚

CF

26˚

28˚

30˚

32˚

34˚

36˚

38˚

330˚ 333˚ 336˚ 339˚ 342˚ 345˚ 348˚

CER

330˚ 333˚ 336˚ 339˚ 342˚ 345˚ 348˚

LWP

Fig. 1. Cloud fraction (CFR), cloud droplet effective radius (CER) and cloudliquid water path (CLWP) for

high and low clouds E and NE of the Canary Islands at spatial resolutions of 5km, 25km and 100km. Different

spatial resolutions suggest different statistics of cloud properties.

driven by micro-scale interactions are modeled at 5◦×5◦ and 2.5◦×2.5◦ resolutions (Quaas et al.,

2009, and references therein).

This paper compares satellite-based inferences of a set of cloud properties relevant to cloud-60

climate interactions, and looks for the best fit analytical probability distribution functions (PDFs).

Cloud Fraction (CF), which modulates the amount of radiation reaching the surface and how much

is reflected back into space; cloud liquid water path (LWP), which acts as a powerful barrier of out-

going radiation; and cloud particle effective radius (re), which modulates the radiative absorption

properties of clouds and the Earth’s albedo. LWP is derived from re and cloud optical depth,τ ,65

through LWP∝ ρw τ re, with ρw the condensed water density (Platnick et al., 2003). Analytical

PDFs fitted here, besides gaussians, have been proposed before: beta for CF (Falls, 1974), Gamma

for LWP andτ (Newman et al., 1995; Barker et al., 1996) and log-normal forturbulent processes

(Monin and Yaglom, 1975). PDFs are for global CF,re and LWP, and means and standard devia-

tions are estimated at resolutions from 5 to 500 km using Collection 5 retrievals from the MODerate70

resolution Infrared Spectrometer (MODIS) aboard the AQUA spacecraft (King et al., 2006).

We quantify the scale-dependence of statistical moments and compare them to predictions for

3

Fig. 1. Cloud fraction (CFR), cloud droplet effective radius (CER) and cloud liquid water path
(CLWP) for high and low clouds E and NE of the Canary Islands at spatial resolutions of 5 km,
25 km and 100 km. Different spatial resolutions suggest different statistics of cloud properties.
The bottom left scene is a composite of blue-green-IR calibrated radiances from MODIS Band
3 (459–479 nm), Band 4 (545–565 nm), and Band 5 (1230–1250 nm).
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al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Unlike CF, LWP andre have a (theoretically) unbounded range of values. Both showskewed,

hence non-gaussian, distributions in Fig. 2. Figure 2(d–f)shows that the log-normal is a better

choice for LWP at resolutions finer than 100 km×100 km, the Gamma function is better at coarser110

resolutions. The log-normal PDF, a popular choice in turbulence, is a good choice for LWP (Fig.

2e). Gamma PDFs provide the best fit tore at all scales (Fig. 2f), which is consistent with how

re depends on cloud droplet radius (Pointikis and Hicks, 1992)and how droplet radius follows

Weibull/Gamma distributions (Liu and Daum, 2002). Figures2ef show that the peak (mode) and

tails of LWP andre PDFs change with spatial resolution. Large deviations determine the tails on115

LWP andre distributions in these figures. As the spatial resolution isdecreased, the averages over

larger areas blur these extreme values. As a result, the distributions at coarser resolutions appear

more symmetric, the means shift closer to the peaks of the distributions and the tails shorten.
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Fig. 2. (a–c) Symbols show the observed values at different spatial averaging scales. Solid lines are the desig-

nated least-squares fits. All PDFs for all variables are non-symmetric.LWP andre have respectively log-normal

and exponential tails that capture the infrequent high values. (d–f) Mean absolute deviations between the ob-

served globalCF (d), LWP (e),reff (f) and the analytical PDFs after a nonlinear least-squares fit.

5

Fig. 2. (a-c) Symbols show the observed values at different spatial averaging scales. Solid lines
are the designated least-squares fits. All PDFs for all variables are non-symmetric. LWP and
re have respectively log-normal and exponential tails that capture the infrequent high values.
(d-f) Mean absolute deviations between the observed global CF (d), LWP (e), reff (f) and the
analytical PDFs after a nonlinear least-squares fit.
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Fig. 3. Scale dependence of the global mean (red), global standard deviations (blue), and mean rescaled

over the global standard deviation (green) for CF, LWP andre. The double brackets<< · · · >> stand for

‘global/ensemble average of local means (at a specific scale).’ The primed quantities are deviations from the

global average value.

Table 1. Observed means, standard deviations and dispersions (inverse of thenormalized means) in the panels

of Fig. 4. Parentheses show the %-difference of every mean from themean of all means, i.e., the global average.
Variable Moment 5 km 10 km 25 km 50 km 100 km 250 km 500 km

Mean - - 0.82 (0.8%) 0.81 (-1.1%) 0.80(-1.4%) 0.82 (0.1%) 0.83 (1.6%)

CF Standard - - 0.12 0.17 0.20 0.24 0.26

Dispersion - - 0.15 0.21 0.25 0.29 0.32

Mean 135.28(-0.7%) 134.20 (-1.5%) 133.00 (-2.4%) 133.18 (-2.3%) 134.79(-1.1%) 140.38 (3.0%) 143.22 (5.1%)

LWP Standard 42.8 58.8 78.5 91.5 103.7 122.3 136.2

Dispersion 0.32 0.44 0.59 0.69 0.77 0.87 0.95

Mean 19.54(0.1%) 19.57(0.1%) 19.57 (0.1%) 19.57 (0.0%) 19.54(-0.1%) 19.52 (-0.1%) 19.51 (-0.1%)

re Standard 2.75 3.57 4.50 5.08 5.59 6.21 6.70

Dispersion 0.14 0.18 0.23 0.26 0.29 0.32 0.34

If CF is decorrelated at 5 km (as in Schutgens and Roebeling, 2009), then consecutive sampling of

CF from uncorrelated pixels is analogous to a temporal sampling of a random binary (cloudy-clear)

outcome, time being proportional to the number of pixels sampled. Therefore, if CF statistics follow

such Poisson-type rules and self-similarity holds up to 5-km resolution, the absolute deviation would

approach the mean value. This is not seen in Fig. 2a where meanCF over its standard deviation135

decreases with increasing pixel size but remains above unity for all the range 5 to 500 km.

Normalized mean LWP approaches unity at the 100×100 km2 pixel size, despite LWP not be-

ing a bimodal distribution. A possible explanation could come from arguments similar to those

from turbulence theory (Frisch, 1995) where the scale-dependence of statistical moments for a vari-

able,X, gives information about how its variance is transferred across scales in turbulent flows.140

Following Jiḿenez (2007), we define a generalized structure function of order n as: SX(n) =
∫

Xn P (X) dX, P (X) being its PDF.SX(n) is used to define a generalized flatness factor as

YX(n) = SX(n)/SX(2)n/2. Kolmogorov’s self-similarity hypothesis for homogeneous turbu-

lence (X is velocity v) leads to the scaling lawSv(n) ∼ Ln/3, at least for lown, and thus

6

Fig. 3. Scale dependence of the global mean (red), global standard deviations (blue), and mean
rescaled over the global standard deviation (green) for CF, LWP and re. The double brackets
<< ···>> stand for “global/ensemble average of local means (at a specific scale)”. The primed
quantities are deviations from the global average value.
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Fig. 4. A different look into cloud property PDFs: means normalized by standard deviations as a function of

scale.

Yv(n) is independent ofL. Note that the normalized LWP means in Fig. 3b areYLWP(1) =145
〈〈LWP〉〉global

〈〈〈LWP〉2−〈〈LWP〉〉2
global

〉
1/2

global

, overlooking that in turbulenceX is a centered (zero-mean) random

variable. The scaling in Fig. 2b for LWP at pixel sizes of 100×100 km2 and larger is then consistent

with that of self-similar turbulent flows in the inertial subrange.

The observedYCF(1) andYre
(1) do not converge to unity in Fig. 3a, but approach a linear law in

the inverse pixel side length,1/L. A linear fit, ỸCF = 3.03+88.21/L was found with mean absolute150

deviation∆CF = 100 × 〈|1 − ỸCF(1)/YCF|〉 = 0.9%. Similar fits to the global normalized means

for LWP andre yield ỸLWP = 1.18 + 10.26/L andỸre
= 3.25 + 20.17/L respectively, with larger

mean absolute deviations∆LWP ≈ ∆re
= 5.5%. As expected from a turbulence perspective, global

means change far less than standard deviations when lookingfor power laws inL. Specifically, we

find 〈CF〉 = 0.8L0.004(∆ = 1%), 〈LWP〉 = 124L0.013(∆ = 1.6%), and〈re〉 = 19.6L−0.001(∆ =155

0.1%), while 〈CF’2〉1/2 = 0.06L0.24(∆ = 5.6%) 〈LWP’2〉1/2 = 33L0.24(∆ = 6.6%), 〈r′2e 〉1/2 =

2.3L0.18(∆ = 6.1%), which approachL1/4.

4 PDFs of locally normalized means

In essence, Fig. 4 shows statistics of statistics as a function of scale. The PDFs are for means

over each pixel normalized locally by the standard deviation over all observations within the pixel.160

Because CF is given at 5×5 km2, a minimum of 25×25 km2 is necessary for the CF pixels to ac-

cumulate some significant standard deviation. The notable finding is that, while the global PDFs of

CF, LWP, andre display different functional forms in Fig. 2, the global PDFs of locally normalized

means have a very similar shape for all variables and all are fitted best by log-normal distributions.

Notice that the PDFs have been displayed in log-scales making the tails more visible and, as is often165

seen in turbulence, they appear to be power-law. However, they contribute little to the absolute de-

viation from the fit when weighted by their frequency of occurrence. Indeed, weighting the absolute

deviations by the observed value (thin lines in Fig. 5 a–c) measures the deviation from the functional

7

Fig. 4. A different look into cloud property PDFs: means normalized by standard deviations as
a function of scale.
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Fig. 5. Mean absolute deviations between the observed and the analytical PDFs in thick lines; thin lines show

the mean absolute deviation between fit and observations when weighted bythe inverse of the observed PDF at

each point.

shape, and this shows that the log-normal remains best for LWPandre at all domain sizes and it

worsens for CF at resolutions finer than 250×250 km2.170

5 Summary and conclusions

Notwithstanding MODIS measurement errors (Boers et al., 2006; Horv́ath and Gentemann, 2007;

Bennartz, 2007; de la Torre Juárez et al., 2009) and those biases caused by incomplete sampling

of highly variable fields (Oreopoulos et al., 2009; Schutgens and Roebeling, 2009), this study has

intercompared a set of analytical functions that best fit theobserved PDFs of global macroscopic175

cloud properties across a large range of scales. Observed cloud fraction is best approached by beta

distributions, droplet effective radius by a Gamma PDF, andliquid water path follows closely a

log-normal or a Gamma distribution. Gaussian PDFs are neverthe best description.

The global normalized mean CF decreases linearly with the sizeL of the local averaging domain

down to about 100×100 km2 areas, at which point it trends upward to a resolution of 500×500 km2.180

Average LWP changes little from 10×10 km2 to 100×100 km2 where it starts increasing linearly

with 1/L. Globally averagedre seems to be independent of the spatial resolution. However,normal-

ized means ofre separate more, with a linear dependence on1/L. The mode of the finer resolution

CF and the coarser LWP distributions approach unity, which isconsistent with the domain-level

statistics following self-similar scaling:YLWP(1) ∼ constant, as described earlier, in analogy with185

turbulence theory and observations. Furthermore, when testing for possible connections to self-

similar Poissonian statistics, CF fails at 5 km and above.

PDFs of locally normalized mean CF, LWP andre (mean over standard deviation inside pixels

of a given size) measure the heterogeneity of clouds within each pixel and follow a scale-dependent

log-normal distribution for all three variables, thus providing a possible unified description of these190

cloud properties at all scales in climate model parameterizations of sub-grid processes. Still, the

normalized PDFs have tails associated with extreme values and unusually low variability missed by

8

Fig. 5. Mean absolute deviations between the observed and the analytical PDFs in thick lines;
thin lines show the mean absolute deviation between fit and observations when weighted by
the inverse of the observed PDF at each point.
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